Inverse Matrix

				
					import numpy as np
				
			

2x2 example

				
					A = np.array([[7, 4],
              [5, 7]])
				
			
				
					A_inv = np.linalg.inv(A)
				
			
				
					print(A_inv)
				
			

3x3 example

				
					B = np.array([[1, 2, 3],
              [0, 1, 4],
              [5, 6, 0]])
				
			
				
					B_inv = np.linalg.inv(B)
				
			
				
					print(B_inv)
				
			

properties

A^-1 * A = A * A^-1 = I
				
					I1 = np.dot(A, A_inv)
				
			
				
					print(I1)
				
			
				
					I2 = np.dot(A_inv, A)
				
			
				
					print(I2)
				
			
(AB)^−1=B^−1A^−1
				
					A = np.array([[2, 1],
              [5, 3]])
				
			
				
					B = np.array([[1, 2],
              [3, 4]])
				
			
				
					A_inv = np.linalg.inv(A)
				
			
				
					B_inv = np.linalg.inv(B)
				
			
				
					AB = np.dot(A, B)
				
			
				
					AB_inv = np.linalg.inv(AB)
				
			
				
					result = np.dot(B_inv, A_inv)
				
			
				
					print(AB_inv)
				
			
				
					print(result)
				
			
(A^T)^−1=(A^−1)^T
				
					A_T = np.transpose(A)
				
			
				
					A_T_inv = np.linalg.inv(A_T)
				
			
				
					A_inv_T = np.transpose(A_inv)
				
			
				
					print(A_T_inv)
				
			
				
					print(A_inv_T)
				
			
(kA)^−1=(1/k)(​A^−1)
				
					k = 2
				
			
				
					kA = k * A
				
			
				
					kA_inv = np.linalg.inv(kA)
				
			
				
					scaled_result = (1 / k) * A_inv
				
			
				
					print(kA_inv)
				
			
				
					print(scaled_result)
				
			
(A^−1)^−1=A
				
					A_double_inv = np.linalg.inv(A_inv)
				
			
				
					print(A_double_inv)
				
			

Ryan is a Data Scientist at a fintech company, where he focuses on fraud prevention in underwriting and risk. Before that, he worked as a Data Analyst at a tax software company. He holds a degree in Electrical Engineering from UCF.

Leave a Reply

Your email address will not be published. Required fields are marked *