uniform distribution python

  import numpy as np import matplotlib.pyplot as plt from scipy.stats import randint
  np.random.seed(11)

Example 1 Random Numbers 0 to 1

  data = np.random.uniform(size=250)
  print(data)

Example 2 Generate Dice Rolls

  n_rolls = 1000
  rolls = np.random.randint(1, 7, size=n_rolls)
  print(rolls)

Example 3 Data Points

  # Calculate the mean, variance, and standard deviation mean_rolls = np.mean(rolls)
  print(mean_rolls)
  var_rolls = np.var(rolls)
  print(var_rolls)
  std_rolls = np.std(rolls)
  print(std_rolls)

Example 4 Histogram Plot

  # Plot the histogram plt.hist(rolls, bins=np.arange(1, 8) - 0.5, edgecolor='black', rwidth=0.8) plt.xlabel('Dice Value') plt.ylabel('Frequency') plt.title(f'Histogram of {n_rolls} Dice Rolls') plt.xticks(np.arange(1, 7)) plt.grid(axis='y', linestyle='--', alpha=0.7) # Show the plot plt.show()

Example 5 Calculate PMF

  dice_distribution = randint(1, 7)
  values = np.arange(1, 7)
  # Calculate the PDF using SciPy (for a discrete uniform distribution) pmf_scipy = dice_distribution.pmf(values)
  # Plot the PMF using SciPy plt.figure(figsize=(12, 6)) plt.bar(values, pmf_scipy, width=0.5, edgecolor='black', alpha=0.7) plt.title('PMF of Dice Rolls (SciPy)') plt.xlabel('Dice Value') plt.ylabel('Probability')

Example 6 Calculate CDF

  # Calculate the CDF using SciPy cdf_scipy = dice_distribution.cdf(values)
  # Plot the CDF using SciPy plt.figure(figsize=(12, 6)) plt.step(values, cdf_scipy, where='post', label='CDF', color='b', marker='o') plt.title('CDF of Dice Rolls (SciPy)') plt.xlabel('Dice Value') plt.ylabel('Cumulative Probability') plt.grid(True) plt.tight_layout() plt.show()

Ryan is a Data Scientist at a fintech company, where he focuses on fraud prevention in underwriting and risk. Before that, he worked as a Data Analyst at a tax software company. He holds a degree in Electrical Engineering from UCF.

Leave a Reply

Your email address will not be published. Required fields are marked *